

COMPARATIVE ANALYSIS OF AZERBAIJAN'S LEVEL OF SELF-SUFFICIENCY IN BASIC FOOD CROPS

Parviz Aliyev Fuad, Ph.D.

Advisor to the Director of the Agricultural Research Center

ORCID: 0000-0001-9403-1585

e-mail: parviz.aliyev@atm.gov.az

Abstract

The pursuit of food self-sufficiency remains a cornerstone of national security strategies for many countries, including Azerbaijan. Conventional metrics, primarily the Self-Sufficiency Ratio (SSR), have traditionally been used to gauge progress toward this goal. This paper provides a critical analysis of Azerbaijan's level of self-sufficiency in key staple crops (wheat, potatoes, and onions) by juxtaposing traditional SSR calculations with an input-adjusted methodology that accounts for the dependency on imported production inputs such as fertilizers and pesticides. Drawing on national food balance sheets, customs data, and agricultural input statistics, the study demonstrates that while Azerbaijan's nominal self-sufficiency in staples like wheat is moderately high, the "effective" self-sufficiency is somewhat lower when the embedded imports in the production process are considered. The paper contextualizes these findings within the broader framework of the Global Food Security Index (GFSI), arguing that a myopic focus on production-side self-sufficiency is insufficient for ensuring comprehensive food security. Azerbaijan's middling GFSI score, compared to regional peers, underscores the importance of factors like affordability, quality, and systemic resilience.

Keywords: Food Self-Sufficiency, Food Security, Azerbaijan, Input-Adjusted SSR, Global Food Security Index, Import Dependency.

Introduction

The concept of food self-sufficiency, defined broadly as the ability of a nation to meet its population's food needs from its own domestic production (FAO, 1999), has experienced a resurgence in global policy discourse. This resurgence is driven by a confluence of factors: the price volatility of global food markets witnessed in 2007-2008 and again more recently, disruptions to global supply chains during the COVID-19 pandemic, and the growing threats of climate change to agricultural productivity. For resource-rich, post-Soviet states like Azerbaijan, which have historically relied on food imports, achieving a high degree of self-sufficiency is not merely an economic objective but a strategic imperative linked to national sovereignty and political stability.

Azerbaijan has made significant investments in its agricultural sector since the early 2000s, aiming to leverage its favorable agro-ecological conditions to reduce dependency on food imports. Government programs have provided subsidies, credit lines, and technical support, leading to notable increases in the production of key staples. Official statistics often highlight rising production volumes and improving self-sufficiency ratios (SSRs) for commodities like wheat, potatoes, and vegetables as indicators of this success.

However, a critical gap exists in this narrative. The conventional SSR, calculated as the ratio of domestic production to domestic consumption, presents a potentially misleading picture. It operates on the implicit assumption that the entire production process is underpinned by domestically sourced inputs. This is rarely the case in a globalized world. Modern agriculture is profoundly dependent on external inputs: mineral fertilizers, chemical pesticides, high-yield seeds, machinery, and fuel. A country can therefore achieve a high nominal SSR while remaining critically dependent on international markets for the very inputs that make that production possible. This creates a vulnerability; a shock that disrupts the flow of these essential inputs can cripple domestic production, rendering a seemingly "self-sufficient" nation food insecure.

This paper seeks to address this gap by conducting a nuanced analysis of Azerbaijan's food self-sufficiency. It moves beyond the conventional SSR to calculate an "input-adjusted" self-sufficiency ratio that incorporates the cost and dependency on imported fertilizers and pesticides. By applying this methodology to wheat, potatoes, and onions, which are strategic staples with low price elasticity of demand, the study aims to reveal the "true" level of Azerbaijan's agricultural self-reliance.

Literature Review

The debate over food self-sufficiency is often framed as a clash between economic efficiency and political sovereignty. Proponents of self-sufficiency, often drawing on food sovereignty movements, argue for the right of nations to insulate themselves from the volatilities and power asymmetries of the global food market (Clapp, 2014). They posit that over-reliance on imports exposes countries to geopolitical risks, currency fluctuations, and export restrictions imposed by supplier nations during times of crisis. The goal is to maximize control over the national food supply.

Conversely, critics from an economic liberal perspective argue that the pursuit of self-sufficiency can be immensely costly. They advocate for comparative advantage, whereby countries should specialize in producing goods for which they have a natural or economic advantage and trade for others. Forcing domestic production of crops unsuited to local conditions can lead to inefficient resource use, environmental degradation (e.g., water scarcity from irrigating water-intensive crops), and higher food prices for consumers (World Bank, 2022). It should be noted that an extreme stance of complete autarky is virtually non-existent; all nations, even major exporters, participate in food trade.

It is crucial to distinguish between food self-sufficiency and food security. The latter is a multi-dimensional concept, formally defined by the FAO as existing "when all people, at all times, have physical, social and economic access to sufficient, safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life" (FAO, 2006). This definition rests on four pillars:

- Availability: Sufficient quantities of food from domestic production or imports.
- Access: Adequate resources (economic and physical) to acquire appropriate food.

- Utilization: Proper biological use of food, determined by factors like sanitation, health care, and knowledge.
- Stability: Consistent access to food over time, without risk of loss due to sudden shocks.

Food self-sufficiency relates primarily to the availability pillar. A country can be food secure without being self-sufficient if it has the economic capacity to reliably import its food needs (e.g., Singapore). Conversely, a country can be self-sufficient in calorie production but still have high levels of food insecurity if access is unequal, or if the diet lacks diversity and nutritional quality.

Methodological Framework

The most established method for measuring self-sufficiency is the Self-Sufficiency Ratio (SSR), typically expressed as:

$$SSR \ (1) = \frac{\text{Domestic Production}}{\text{Domestic Consumption}} \times 100 \quad (1)$$

here:

- *Domestic production - volume of output produced within the country*
- *Domestic consumption - volume of output consumed within the country (production + imports - exports ± change in stocks)*

This method, championed by the FAO through its Food Balance Sheets (FBS), is simple, transparent, and allows for cross-country comparisons. However, it has several well-documented limitations (Porkka et al., 2013; FAO, 2012):

- *It does not trace the origin of production inputs (fertilizers, pesticides, energy, machinery).*
- *It can mask critical deficits in specific nutrients or food groups. A country may have a high overall calorie SSR but rely entirely on imports for protein or key vitamins.*
- *It does not distinguish between food and non-food uses (e.g., wheat for bread vs. wheat for animal feed or biofuel), a point critically relevant for Azerbaijan's wheat sector.*

To address the last point, the FAO proposes a refined SSR for specific food uses:

$$SSR \ (2) = \frac{\text{Domestic Production (food food use only)}}{\text{Domestic Consumption}} * 100 \quad (2)$$

This provides a clearer picture of sufficiency for direct human consumption but remains blind to input dependencies.

A growing body of literature challenges the adequacy of conventional SSRs, arguing they fail to capture "true" or "effective" self-sufficiency by ignoring the global embeddedness of production (Parviainen & Helenius, 2020; Liu et al., 2024). Two prominent methodological families have emerged:

- **Input-Output and Material-Flow Approaches.** These methods trace the flow of physical inputs (like nutrients NPK) through the economy. By analyzing the import shares of fertilizers, pesticides, and animal feed, researchers can estimate what portion of the "domestically produced" output is actually dependent on imported physical substances. Parviainen & Helenius (2020), for instance, demonstrated for Finland that

trade imports increasingly contribute to plant nutrient inputs, revealing a hidden dependency that nominal production figures conceal.

- **Energy-Based Approaches.** Emergy (a contraction of "embodied energy") analysis converts all inputs to a production system, whether natural (sunlight, rain) or purchased (fertilizer, diesel), into a common unit of solar energy (sej). This allows for the calculation of an Emergy Self-Sufficiency Ratio (ESR), which quantifies the proportion of a system's total resource base that is derived from free, local sources versus purchased, often imported, inputs (Liu et al., 2024). This data-intensive method can be translated into "crop equivalents" to show how much production is virtually imported via inputs.

Furthermore, scholars like Takahashi (2024) have proposed alternative metrics like the Supply-Side Food Self-Sufficiency Ratio (SSFSSR), which aims to capture the entire supply chain from primary production to final consumption, converting everything into calories to avoid double-counting.

Despite these advances, their application to post-Soviet contexts like Azerbaijan remains scarce. Most analyses of Azerbaijan's agriculture rely on descriptive statistics and conventional SSRs, leaving a significant gap in understanding the nation's effective resilience and true level of agri-food system independence.

We took an extensive approach in the calculation of self-sufficiency ratios in this study. Quick review of the equations is presented below:

Step 1: Calculation of Conventional Self-Sufficiency Ratios (SSR) (for wheat only)

We first calculate two standard SSRs for wheat, given its dual use for food and feed:

- Total SSR (SSR_T): Using formula (1), where Domestic Consumption includes all uses (food, feed, seed, etc.).
- Food SSR (SSR_F): Using formula (2), where Domestic Production for Food is derived by subtracting non-food uses (feed, seed, industrial) from total production.

For potatoes and onions, which are primarily food crops, we calculate the standard SSR (Formula 1).

Step 2: Calculation of Input-Adjusted Self-Sufficiency Ratio (SSR_IA)

This study's core methodological contribution lies in the development of a simplified yet informative input-adjusted Self-Sufficiency Ratio (SSR) that accounts for the cost of imported inputs. The procedure begins by calculating the quantity of fertilizers (excluding nitrogen) and pesticides used per hectare of cultivated land for each crop. This value is then divided by the average import price of the respective crop to derive the crop-equivalent of inputs.

For example, in the case of wheat, the calculated input requirement corresponds to 0.248 tons of wheat per hectare in 2024. Multiplying this figure by the total sown area of wheat yields the aggregate crop-equivalent of inputs, amounting to 135.4 thousand tons for 2024. This figure represents the implicit import of the crop embodied in its input use.

Incorporating this implicit import into the SSR calculation produces a more accurate measure—referred to as the real or input-adjusted SSR—which better reflects the true level of domestic self-sufficiency once imported input dependencies are considered.

Data Sources

The analysis draws on the following primary data sources for the year 2024 (or the latest available year), as provided in the attached document:

▪ **Food Balance Sheets.** Sourced from the State Statistical Committee of the Republic of Azerbaijan, providing data on production, trade, stock changes, and utilization (food, feed, seed, loss) for wheat, potatoes, and onions (*Table 1*).

Table 1. Food balances for major agricultural products, 2024

	Wheat	Potato	Onion
Resources			
Balance at the beginning of the year	401 296	649 234	59 778
Production	1 649 917	927 382	364 391
Imports	1 292 027	165 333	8 838
Total reserves	3 343 240	1 741 949	433 007
Utilization			
For seeds	111 447	140 246	207
For livestock and poultry feed	695 681	60 191	-
For food production	1 857 189	-	-
Private consumption fund of the population	31 547	820 072	309 493
For non-food production	133 818	10 880	-
Exports	-	48 543	21 439
Losses	55 165	58 258	33 249
Residual at the end of the year	458 393	603 759	68 619
Total uses	3 343 240	1 741 949	433 007

Source: State Statistical Committee, https://www.stat.gov.az/source/food_balances/

▪ **Production and Trade Data.** Data on production volumes, import/export volumes, sown area, and import prices for a broader set of crops, including wheat, barley, corn, potato, tomato, onion, vegetables, and fruits/berries (Table 2). This data is compiled from the State Statistical Committee and the State Customs Committee (SSC).

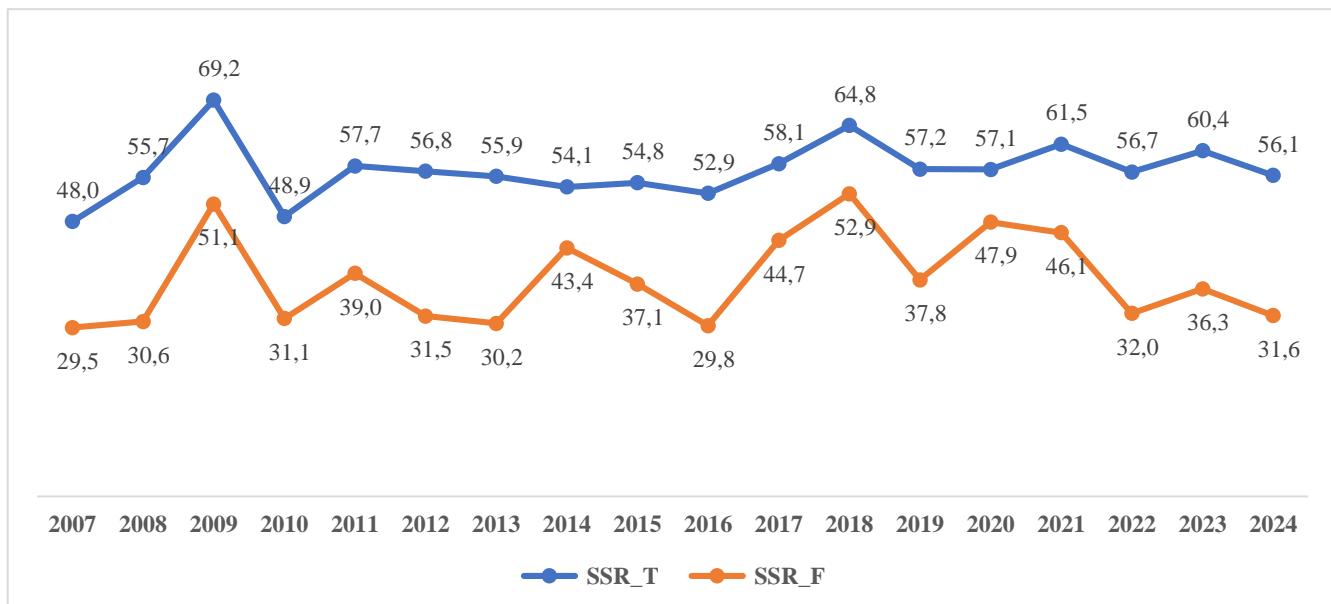
▪ **Agricultural Input Data (FDN).** Data on the usage and cost of phosphorus, potassium, and mixed fertilizers, as well as pesticides, per hectare for key crops (Table 3). This data is sourced from the Farmer Data Network. A critical note is that data on nitrogen fertilizers is excluded, as Azerbaijan has achieved domestic production of urea since 2019.

Table 2. Data on production, import, export, cultivated area and import price of agricultural products, 2024

	Production, ton	Import, ton	Export, ton	Sown area, ha	Import price, AZN/ton
Wheat	1649917	1292027	0	546346	366
Potato	927382	165333	48543	46749	465
Onion	364391	8838	21439	12203	682

Source: State Statistics Committee and State Customs Committee

Table 3. Data on the use of fertilizers and pesticides per hectare of cultivated area, 2021*


	Sown area, ha	Phosphorus usage, AZN	Potassium usage, AZN	Mixed fertilizer usage, AZN	Pesticides usage, AZN
Wheat	11019	396866	7213	478638	117503
Potato	70	22500	7739	10763	7683
Onion	41	12569	5350	0	75

Source: Farmer Data Network

***Note:** Information on nitrogen fertilizer is not included. Since Azerbaijan has been producing nitrogen fertilizer (urea) since 2019, this fertilizer is not imported.

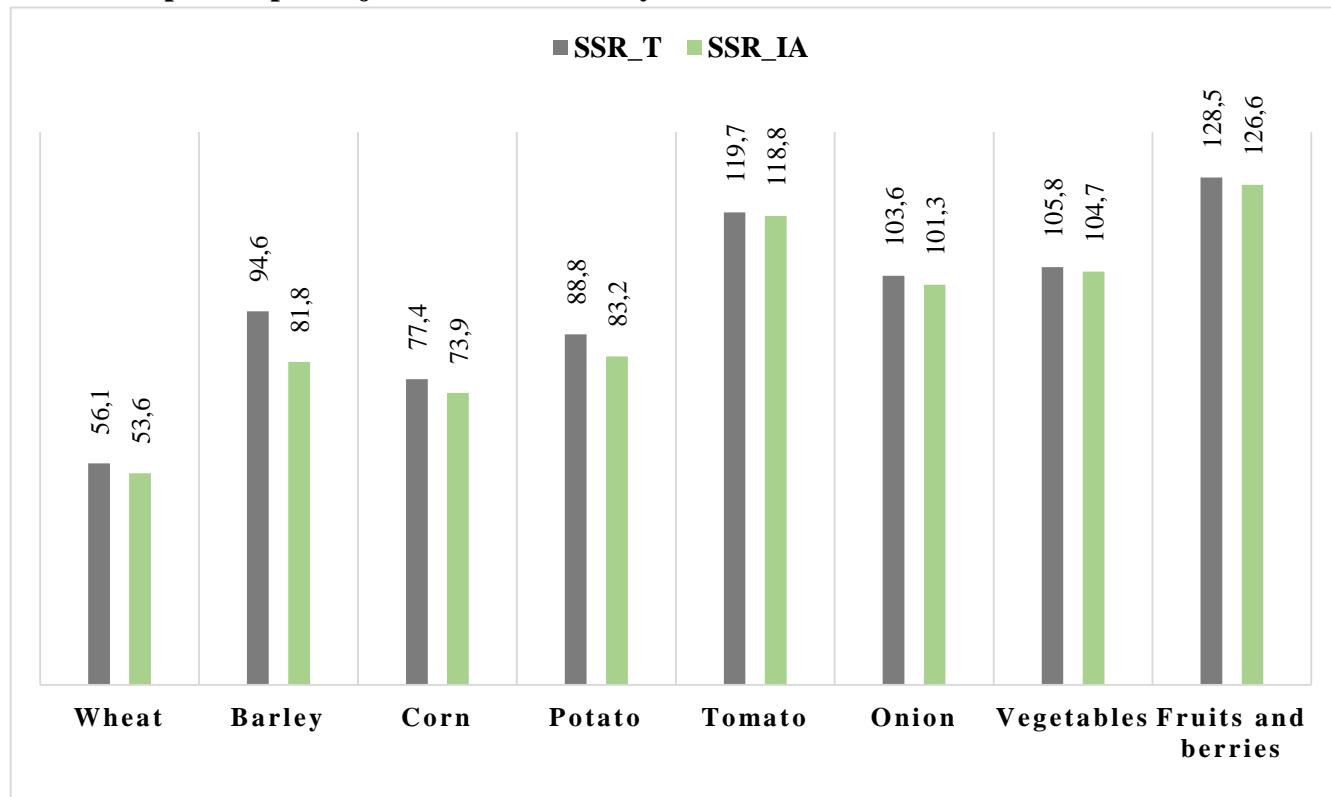
Key Findings

The results of the calculations conducted in the first step is presented on the graph below:

Graph 1. Comparison of wheat self-sufficiency indicators

Source: Calculated based on the data from the State Statistical Committee of the Republic of Azerbaijan

Multiple country studies and government/agency reports show that Azerbaijan's self-sufficiency in cereals, and wheat in particular, has historically been below full self-sufficiency and remains sensitive to policy and external trade conditions. National analyses show that the cereal self-sufficiency rate has fluctuated in recent years (e.g., figures around ~57–74% for cereals/wheat in the late 2010s–2020), and that a large share of wheat imports historically came from Russia and Kazakhstan.


As illustrated in the graph, the total SSR has consistently remained higher than the food SSR throughout the observed period. Between 2017 and 2021, the gap between these two ratios was at its narrowest. However, beginning in 2021, the difference started to widen markedly. The last three years show the largest divergence, averaging 24.4 percentage points.

This trend indicates a declining level of self-sufficiency in food-grade wheat in Azerbaijan. A plausible explanation lies in the increasing use of wheat for livestock and poultry feed. Indeed, between 2007 and 2024, the volume of wheat allocated to feed purposes rose by approximately 3.3% per year, underscoring a gradual structural shift in wheat utilization.

FAO monitoring and national statistics indicate continuing import requirements for cereals even when domestic production increases, and FAO's GIEWS brief highlights steady wheat import requirements in recent seasons and policy measures (e.g., VAT exemptions) intended to stabilize domestic prices¹.

The results of the calculation of the input-adjusted SSR is presented in the graph below.

Graph 2. Input-adjusted self-sufficiency ratio

Source: Calculated using data from the SSC and FDN.

As illustrated in the graph, the input-adjusted self-sufficiency ratio (SSR_IA)—which accounts for the import of production inputs—is, as expected, lower than the conventional SSR. The greater the share of imported inputs in total production costs, the stronger the downward impact on self-sufficiency.

In the case of wheat, the SSR_IA is 53.6%, indicating that, in the hypothetical absence of imported inputs, self-sufficiency would be at this level. However, this scenario is purely theoretical. In reality, if Azerbaijan did not import such inputs, domestic production would be severely constrained, or productivity would fall substantially. Consequently, these findings should be interpreted as conceptual insights rather than practical outcomes.

¹ FAO/GIEWS Country Cereal Balance Sheet (CCBS), <https://www.fao.org/giews/data-tools/en/>

Moreover, the smallest difference between the conventional and input-adjusted SSRs is observed for tomatoes. This is primarily because approximately half of Azerbaijan's tomato production occurs in greenhouses, where the use of fertilizers and pesticides is relatively limited.

We employed SSR_F and SSR_IA to assess the real level of self-sufficiency in Azerbaijan. The primary objective was to determine whether the country is capable of meeting the dietary needs of its population with domestically produced staple foods. The results provided valuable insights into the degree of dependence on imported inputs and the overall sustainability of domestic food production.

To further validate these findings, they can be compared with the outcomes of a more comprehensive assessment developed by the World Bank - the Global Food Security Index (GFSI). This index offers a unified framework for evaluating the affordability, availability, quality, and safety of food systems, as well as their sustainability and adaptability.

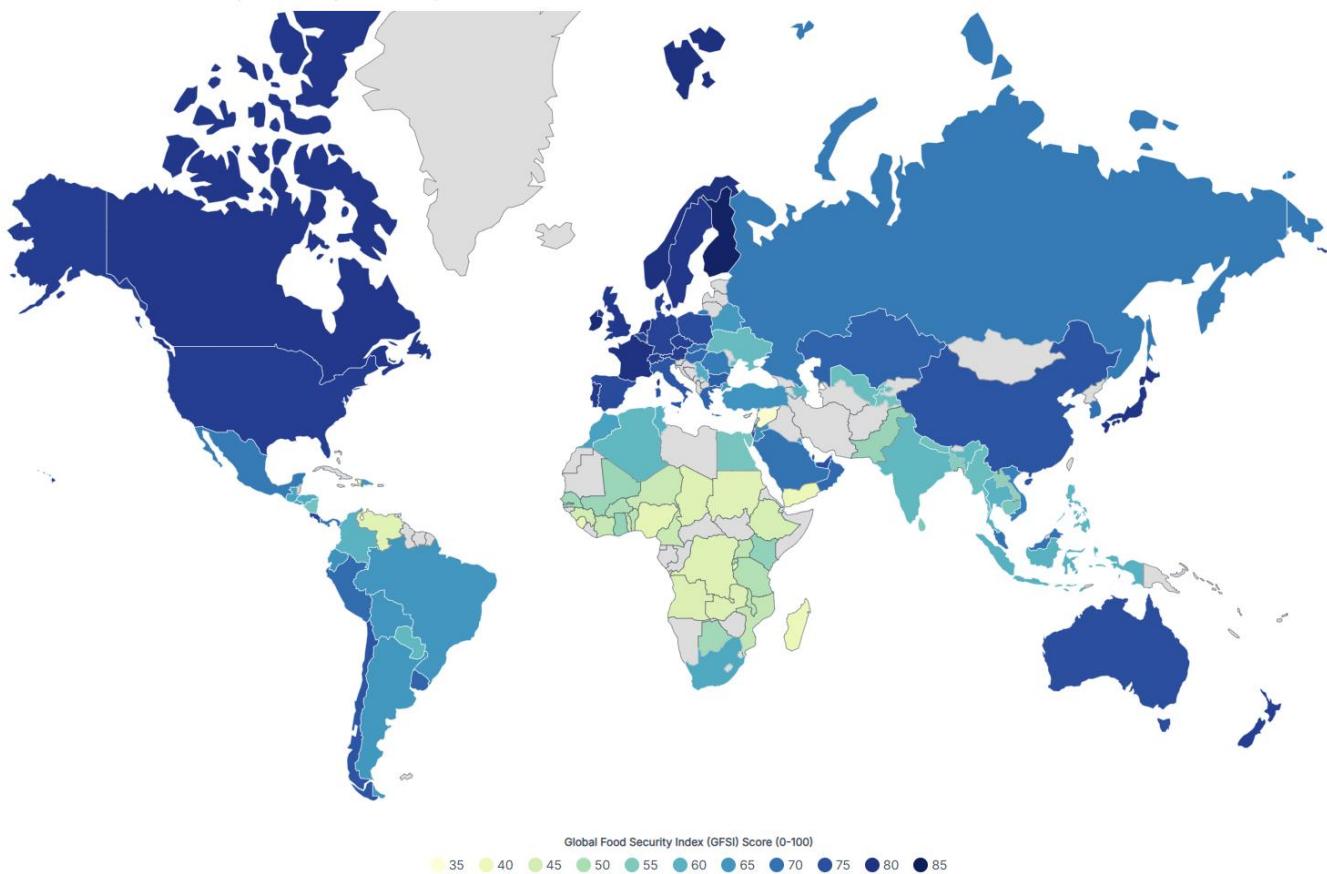
The GFSI assesses food security across 113 countries using a dynamic quantitative and qualitative benchmarking model comprising 68 distinct indicators. These indicators capture the key drivers of food security in both developing and developed economies.

The index evaluates each country across four main pillars:

- Affordability – measures physical and economic access to food, including factors such as the ratio of food prices to average income, value-added tax (VAT) on food, food donations, and investment in agricultural research.
- Availability – assesses the sufficiency and stability of food supply, considering indicators such as domestic food production, resource availability, infrastructure quality, logistics, and food policy effectiveness.
- Quality and Safety – evaluates the nutritional value, quality, and safety of available food, through indicators such as the use of preservatives and additives, the existence of national nutrition plans, and food safety regulations.
- Natural Resources and Resilience – measures the capacity of the food system to withstand climate change and environmental risks, including factors such as water stress, soil erosion, ocean acidification, dependence on precipitation, and adaptation strategies.

The overall GFSI score is measured on a 0–100 scale, where higher scores indicate greater food security.

It is important to note that food self-sufficiency and food security, although related, are not synonymous. A country is considered food secure if food is available, accessible, nutritious, and stable across the other three dimensions¹. But food security as a concept does not distinguish whether that food is imported from abroad or grown domestically². Food self-sufficiency, on the other hand, is focused on the supply, or availability component of food security, and is concerned with ensuring that the country has the capacity to produce food in sufficient quantities to meet its domestic needs.


Country-level GFSI values are shown below (**Pic.1**).

¹ An Introduction to the Basic Concepts of Food Security, FAO, <https://www.fao.org/4/al936e/al936e00.pdf>

² Clapp, J. (2014). Food security and food sovereignty: Getting past the binary. *Dialogues in Human Geography*, 4(2), 206-211.

Pic 1. Food Security Index by Country, 2022.

Source: <https://worldpopulationreview.com/country-rankings/food-self-sufficiency-rate-by-country>

As illustrated in the figure, the countries with the highest Food Security Index (FSI) scores globally are Finland, Ireland, Norway, Sweden, and the Netherlands, each achieving a score above 80. In comparison, Azerbaijan's FSI score stands at 59.8, indicating a moderate level of food security. Within the region, Uzbekistan records an FSI of 57.5, Turkey - 65.3, Russia - 69.1, and Kazakhstan - 72.1.

Conclusions and recommendations

The gap between the conventional SSR and the input-adjusted SSR indicates that Azerbaijan's agricultural self-sufficiency is somewhat reliant on imported fertilizers and pesticides. This dependency exposes the food system to external price shocks, supply chain disruptions, and geopolitical risks affecting import flows.

To strengthen resilience, Azerbaijan may need to diversify its sources of agricultural inputs and invest in domestic production or alternatives, such as organic fertilizers or precision agriculture technologies, to reduce dependence on imports.

A moderate level of food security. This implies that while Azerbaijan maintains a relatively stable food supply, it remains vulnerable to disruptions in affordability, quality, or sustainability.

The country's FSI score, compared to regional peers, points to potential inefficiencies in agricultural productivity, food affordability, and infrastructure. Targeted policies to improve storage, logistics, and access to credit for farmers could help close these gaps.

The lower ranking also reflects challenges in the sustainability and resilience pillar of the FSI. Azerbaijan's agricultural sector is sensitive to climate variability and water scarcity, highlighting the need for investment in irrigation efficiency, soil management, and adaptive farming practices.

The findings suggest that food self-sufficiency alone does not guarantee food security. Azerbaijan's policy approach should therefore integrate both domestic production capacity and access/affordability measures, ensuring that food is not only produced locally but also accessible, nutritious, and stable over time.

Literature

1. An Introduction to the Basic Concepts of Food Security, FAO, <https://www.fao.org/4/al936e/al936e00.pdf>
2. Clapp, J. (2014). Food security and food sovereignty: Getting past the binary. *Dialogues in Human Geography*, 4(2), 206-211.
3. State Statistical Committee, https://www.stat.gov.az/source/food_balances/
4. Food Security Index by Country, 2022, <https://worldpopulationreview.com/country-rankings/food-self-sufficiency-rate-by-country>
5. State Statistics Committee of The Republic of Azerbaijan, <https://www.stat.gov.az/source/agriculture/>
6. State Customs Committee of The Republic of Azerbaijan, <https://customs.gov.az/az/faydali/gomruk-statistikasi/statistics-bulletin>
7. Clapp, J. (2014). Food security and international trade: Unpacking disputed narratives. Rome: FAO.
8. FAO. (2006). Food Security. Policy Brief, Issue 2. Rome: Food and Agriculture Organization of the United Nations.
9. World Bank. (2022). World Development Report 2022: Finance for an Equitable Recovery. Washington, DC: World Bank.
10. Farmer Data Network, Ministry of Agriculture, Agricultural Research Center, Azerbaijan
11. FAO. (2023). GIEWS Country Brief: Azerbaijan. Rome: Food and Agriculture Organization of the United Nations, Global Information and Early Warning System.
12. The Economist Group. (2023). Global Food Security Index (GFSI) 2023. London: The Economist Group. Retrieved from <https://impact.economist.com/sustainability/project/food-security-index/>
13. FAO. (1999). The State of Food Insecurity in the World 1999. Rome: Food and Agriculture Organization of the United Nations.
14. FAO. (2012). The State of Food Insecurity in the World 2012. Rome: Food and Agriculture Organization of the United Nations.
15. Liu, G., Casazza, M., Hao, Y., & Zhang, Y. (2024). Evaluating Food Production Systems Based on the Energy Approach: A Systematic Review. *Journal of Cleaner Production*, 434, 140–154.
16. Parviainen, T., & Helenius, J. (2020). Nutrient self-sufficiency of Finnish agriculture: historical development and future prospects. *Agricultural and Food Science*, 29(2), 87–103.
17. Porkka, M., Kummu, M., Siebert, S., & Varis, O. (2013). From Food Insufficiency towards Trade Dependency: A Historical Analysis of Global Food Availability. *PLOS ONE*, 8(12), e82714.
18. Takahashi, K. (2024). Rethinking Self-Sufficiency: A Supply-Side Metric for Food Security. *Global Food Security*, 40, 100739.

I.ü.f.d. P.F. Əliyev
Aqrar Tədqiqatlar Mərkəzinin direktorunun müşaviri

Azərbaycanda əsas ərzaqlıq kənd təsərrüfatı bitkiləri üzrə özünütəminetmə səviyyəsinin müqayisəli təhlili

Xülasə

Ərzaq məhsulları ilə özünütəminetməyə nail olmaq bir çox ölkələr, o cümlədən Azərbaycan üçün milli təhlükəsizlik strategiyalarının əsas istiqamətlərindən biridir. Bu istiqamətdə irəliləyişi ölçmək üçün ən geniş istifadə olunan göstərici özünütəminetmə əmsalıdır (ÖTƏ). Məqalədə Azərbaycanın əsas ərzaq məhsulları (buğda, kartof və soğan) üzrə özünütəminetmə səviyyəsi təhlil edilmiş və idxal olunan istehsal resursları (gibrə və pestisidlər) nəzərə alınmaqla real və ya resursları nəzərə alan ÖTƏ əmsali hesablanmışdır. Ərzaq balansı cədvəlləri, idxal-ixrac və istehsal resurslarından istifadə ilə bağlı məlumatlardan istifadə edilərək aparılmış hesablamaların nəticələri göstərir ki, Azərbaycanın buğda kimi əsas məhsullarda özünütəminetmə səviyyəsi nisbətən yüksək olsa da, istehsal prosesinə daxil olan idxal komponentləri nəzərə alındıqda “effektiv” özünütəminetmə səviyyəsi nisbətən aşağıdır. Məqalə bu nəticələri Qlobal Ərzaq Təhlükəsizliyi İndeksi (QƏTİ) kontekstində qiymətləndirir və yalnız istehsal tərəfli özünütəminetməyə yönəlmış yanaşmanın hərtərəfli ərzaq təhlükəsizliyini təmin etmək üçün kifayət etmədiyini vurğulayır.

Azərbaycanın QƏTİ üzrə orta səviyyəli nəticəsi region ölkələri ilə müqayisədə ərzağın əlçatanlığı, keyfiyyəti və ümumiyyətlə, ərzaq sisteminin dayanıqlılığı kimi amillərin əhəmiyyətini bir daha önə çıxarır.

Açar sözlər: ərzaq məhsulları ilə özünütəminetmə, ərzaq təhlükəsizliyi, Azərbaycan, resursları nəzərə alan ÖTƏ, Qlobal Ərzaq Təhlükəsizliyi İndeksi, idxaldan asılılıq.

Д.Ф.Э.Н., П.Ф. Алиев
Советник директора Центра аграрных исследований

Сравнительный анализ уровня продовольственной самодостаточности Азербайджана по основным сельскохозяйственным культурам

Резюме

Стремление к продовольственной самодостаточности остаётся краеугольным камнем национальных стратегий безопасности во многих странах, включая Азербайджан. Для оценки прогресса в этом направлении традиционно используются такие показатели, как коэффициент самодостаточности (SSR). В данной работе проводится критический анализ уровня продовольственной самодостаточности Азербайджана по основным продовольственным культурам (пшеница, картофель и лук) путём сопоставления традиционных расчётов SSR с модифицированной методикой, учитывающей зависимость от импортируемых производственных ресурсов, таких как удобрения и пестициды. Основываясь

на данных национальных продовольственных балансов, таможенной статистики и статистики сельскохозяйственных ресурсов, исследование показывает, что, несмотря на относительно высокий номинальный уровень самодостаточности Азербайджана по основным культурам (например, по пшенице), «эффективная» самодостаточность оказывается ниже, если учитывать импортные составляющие, заложенные в производственный процесс. Результаты анализа рассматриваются в более широком контексте Глобального индекса продовольственной безопасности (GFSI). В работе подчёркивается, что узкая ориентация исключительно на показатели самодостаточности в производстве не обеспечивает комплексной продовольственной безопасности. Средний уровень показателя GFSI для Азербайджана по сравнению с соседними странами региона указывает на важность таких факторов, как доступность продовольствия, его качество и системная устойчивость.

Ключевые слова: продовольственная самодостаточность, продовольственная безопасность, Азербайджан, скорректированный по импорту коэффициент SSR, глобальный индекс продовольственной безопасности, зависимость от импорта.